Callands Community Primary School

Calculation Policy May 2021

Addition & Subtraction Strategies

Modelling

The following methods of modelling are used when teaching addition and subtraction. There is an example of each technique taught and an explanation as to the benefits of each method.

Part-Whole Model

6

7 = 4 + 3 7 = 3 + 4 7 – 3 = 4 7 – 4 = 3

Benefits of this model:

This supports children's understanding of aggregation and partitioning.

When the parts are complete and the whole is empty, aggregation is used to add the parts together to find the total.

When the whole is complete and at least one of the parts is empty, then partitioning (which is a form of subtraction) is used to find the missing part.

These models can be used to partition into 2 or more parts or to help visualise partitioning an amount into place value amounts instead of only using columns to represent this.

In KS2, these models are also used to add and subtract fractions, decimals and percentages.

Bar Model (Single)

Benefits of this model:

This model is a different form of part-whole model that represents calculations.

Cubes and counters can be used in a line as a concrete representation of this type of bar model. This is particularly useful for EYFS and KS1.

In EYFS and KS1, the discrete bar model is a good starting point with smaller numbers where each box represents one whole.

From KS1 to LKS2, the combination bar model supports children to calculate by counting on from the larger number and is a good stepping stone towards the continuous bar model.

In LKS2 to UKS2, the continuous bar model is useful for a range of values; where each rectangle represents a number.

In UKS2, these models are used to represent larger numbers, decimals and fractions.

Question marks are used to indicate the value to be found.

Bar Model (Multiple)

7 - 3 = 4

Discrete

Continuous

Benefits of this model:

This method is a good way to compare quantities whilst still representing calculations.

Two or more bars are drawn with a bracket labelling the whole; usually to the right-hand side of the bars. Smaller numbers are represented with a discrete bar model and larger numbers use continuous bar models.

These models can also be used to represent the difference in subtraction by using an arrow.

When using smaller numbers, cubes and discrete bars to find the difference which supports counting on.

Number Shapes

Benefits of this model:

This method is a good way to explore aggregation, partitioning and number bonds.

When adding numbers, it is possible to see how the parts come together to make a whole.

When subtracting numbers, children can start with the whole then place the part on top to see the missing amount.

This method allows children to work systematically to find number bonds.

Cubes

Benefits of this method:

This can be useful to support with addition and subtraction of one-digit numbers but are less efficient when working with larger numbers.

When adding numbers, it is possible to see how the parts come together to make a whole. Two different colours can also be used to represent the individual numbers before putting them together to create the new whole.

When subtracting numbers, children are able to start with the whole and then remove the number of cubes they are subtracting in order to see the answer (referred to as reduction or take away).

Ten Frames (within 10)

$$3 = 7$$
 4 is a part.
 $4 = 7$ 3 is a part.
 $3 = 4$ 7 is the whole.
 $4 = 3$

Benefits of this method:

When adding and subtracting within 10, the ten frame can support children to understand the different structures of addition and subtraction.

Using the language of parts and wholes represented by objects on the ten frame introduces children to aggregation and partitioning.

Aggregation is a form of addition where parts are combined together to make a whole. Partitioning is a form of subtraction where the whole is split into parts. Using these structures, the ten frame can enable children to find all the number bonds for a number.

Tens frames and number stories are a useful method for this.

First

Then

Now

4 + 3 = 7

Ten Frames (within 20)

Benefits of this method:

When adding two single digits, children can make each number on a separate tens frame before moving one number to make 10 on one of the tens frames. This supports children to see how they partitioned one of the numbers to make 10, and makes links to effective mental methods.

When subtracting a one-digit numbers form a two-digit number, firstly make the larger number on 2 tens frames and then remove the smaller number.

When adding three single-digit numbers, children can make each number on a separate tens frame before considering which order to add the numbers in.

Bead Strings

Benefits of this method:

Different sized bead strings can support children at different stages of addition and subtraction.

Bead strings strings to 10 are obviously good for practising number bonds to 10 as the beads can be moved one at a time.

Bead strings to 20 are similar but they also group beads in 5's. This also helps link number bonds to 20 back with number bonds to 10.

Bead strings to 100 help with bonds to 100 and also count in patterns of 10. This also demonstrates adding the next ten on a number line.

Number Tracks

Benefits of this method:

Number tracks are useful to support children in their understanding of augmentation and reduction.

This method helps with counting on for addition and subtraction/difference.

Playing board games will help children become confident with number tracks.

Number Lines (labelled)

5 + 3 = 8

Benefits of this method:

Labelled number lines support children in their understanding of augmentation and reduction.

This skills links directly with the number track.

Progressing further, this supports more complex addition and subtraction as children can jumping to the nearest ten to the number. This partitioning method can also be shown using a tens frame.

Number Lines (blank)

35 + 37 = 72

35 + 37 = 72

72 - 35 = 37

Benefits of this method:

Blank number lines provide children with a structure to add and subtract numbers in smaller parts.

This method enables children to make larger jumps and calculate more efficiently.

Straws 7 + 6 = 13bundle together groups of 10 42 - 17 = 25unbundle group of 10 straws

Benefits of this method:

Straws are an effective way to support children in their understanding of exchange when adding and subtracting 2-digit numbers.

When adding, children can bundle a group of 10 straws to represent exchange from ten ones to 1 ten.

When subtracting, children can unbundle a group of 10 straws to represent exchange from1 ten to ten ones.

Base 10/Dienes (addition)

Benefits of this method:

Using base ten or Dienes is an effective way to support children's understanding of column addition. The written method must be written alongside, so that clear links are made.

Children should first add without exchange and then move on to exchange.

When adding always start with the ones column.

This model is efficient with up to 4 digit numbers. Place value counters are more efficient with larger numbers and decimals.

Base 10/Dienes (subtraction)

435 273 262 Benefits of this method:

Using base ten or Dienes is an effective way to support children's understanding of column subtraction. The written method must be written alongside, so that clear links are made.

Children should first subtract without exchange and then move on to exchange.

This model is efficient with up to 4 digit numbers. Place value counters are more efficient with larger numbers and decimals.

Place Value Counters (addition)

Benefits of this method:

Using place value counters is an effective way of supporting column addition. It is important that the children write the calculation alongside the grid so clear links are made.

Children should first add without exchange before moving onto exchange.

Coins can also be used when working with money.

Place Value Counters (Subtraction)

Thousands	Hundreds	Tens	Ones	
0000	000	0000	0000	³ /4357
4	0000			- 2735
<u>(</u>	ØØ			1622
				124 85

Benefits of this method:

Using place value counters is an effective way of supporting column subtraction. It is important that the children write the calculation alongside the grid so clear links are made.

Children should first subtract without exchange before moving onto exchange.

Coins can also be used when working with money.

ADDITION

Skill	Year	Representations and models	
Add two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Add 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead strings (20) Number tracks Number lines (labelled) Straws
Add three 1-digit numbers	2	Part-whole model Bar model	Ten frames (within 20) Number shapes
Add 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Add two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters Column addition
Add with up to 3-digits 3		Part-whole model Bar model	Base 10 Place value counters Column addition
Add with up to 4-digits 4		Part-whole model Bar model	Base 10 Place value counters Column addition
Add with more than 4 5 digits		Part-whole model Bar model	Place value counters Column addition
Add with up to 3 decimal places 5		Part-whole model Bar model	Place value counters Column addition

Addition

r.

SUBTRACTION

Skill	Year	Representations and models	
Subtract two 1-digit numbers to 10	1	Part-whole model Bar model Number shapes	Ten frames (within 10) Bead strings (10) Number tracks
Subtract 1 and 2-digit numbers to 20	1	Part-whole model Bar model Number shapes Ten frames (within 20)	Bead string (20) Number tracks Number lines (labelled) Straws
Subtract 1 and 2-digit numbers to 100	2	Part-whole model Bar model Number lines (labelled)	Number lines (blank) Straws Hundred square
Subtract two 2-digit numbers	2	Part-whole model Bar model Number lines (blank) Straws	Base 10 Place value counters Column addition
			a 10
Subtract with up to 3- digits	3	Part-whole model Bar model	Base 10 Place value counters Column addition
Subtract with up to 4- digits	4	Part-whole model Bar model	Base 10 Place value counters Column addition
Subtract with more than 4 digits	5	Part-whole model Bar model	Place value counters Column addition
Subtract with up to 3 decimal places	5	Part-whole model Bar model	Place value counters Column addition

.

Subtraction

Ski	Year: 2	
65 28 65 7	$\begin{array}{c} +2 & +30 & +5 \\ 28 & 30 & 60 & 65 \\ \hline & & & & & & & & & & & & & & & & & &$	At this stage, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters. As numbers become larger, straws become less efficient.
Tens	$\frac{1}{1}$ $\frac{1}$	Children can also use a blank number line to count on to find the difference. Encourage them to jump to multiples of 10 to become more efficient.

Skill: Subtract with up to 3 decimal places	Year: 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Place value counters and plain counters on a place value grid are the most effective manipulative when subtracting decimals with 1,2 and then 3 decimal places. Ensure children have experience of subtracting decimals with a variety of decimal places. This includes putting this into context when subtracting money and other measures.
Cres Tentrs Hundhedths I I I I I	

Glossary

Addend - A number to be added to another.

Aggregation - combining two or more quantities or measures to find a total.

Augmentation - increasing a quantity or measure by another quantity.

Commutative - numbers can be added in any order.

Complement – in addition, a number and its complement make a total e.g. 300 is the complement to 700 to make 1,000

Difference – the numerical difference between two numbers is found by comparing the quantity in each group.

Exchange – Change a number or expression for another of an equal value. Minuend – A quantity or number from which another is subtracted.

Partitioning – Splitting a number into its component parts.

Reduction - Subtraction as take away.

Subitise – Instantly recognise the number of objects in a small group without needing to count.

Subtrahend - A number to be subtracted from another.

Sum - The result of an addition.

Total - The aggregate or the sum found by addition.

Multiplication and Division Strategies

Modelling

The following methods of modelling are used when teaching addition and subtraction. There is an example of each technique taught and an explanation as to the benefits of each method.

Bar Model

This single bar model can be used to represent multiplication as repeated addition.

Division can be represented by showing the total of the bar model and then dividing the bar model into equal groups.

It is important when solving a word problem that the bar model represents the problem.

Number Shapes

$$5 \times 4 = 20$$
$$4 \times 5 = 20$$

Number shapes can be used to represent multiplication as repeated addition.

Children can build multiplication in rows using the number shapes.

This method can support children in finding patterns e.g. odd x odd = even, odd x even = odd and even x even = even.

 $18 \div 3 = 6$

Bead Strings

 $5 \times 3 = 15$ $3 \times 5 = 15$ $15 \div 3 = 5$

 $5 \times 3 = 15$ $3 \times 5 = 15$ $15 \div 5 = 3$

$$4 \times 5 = 20$$

 $5 \times 4 = 20$
 $20 \div 4 = 5$

Benefits of this method:

Bead strings to 100 can support children in their understanding of multiplication as repeat addition.

The colour of the beads supports children in seeing the groups.

Children can use the beads to count forwards and backwards, moving the beads as they count.

When dividing, children build the number they are making and then divide it into groups.

Number Tracks

 $6 \times 3 = 18$ $3 \times 6 = 18$ Benefits of this method:

Number tracks are useful in helping children count in multiples, forwards and backwards. Translucent counters are the best so the children can see the number underneath.

When multiplying, the children start at 0 and count on to find the product of their number.

When dividing, the children place the counter on the number they are dividing and count back in jumps until they reach 0.

Number tracks are useful only for working with smaller numbers.

 $18 \div 3 = 6$

Number Lines (labelled)

 $4 \times 5 = 20$ $5 \times 4 = 20$

Labelled number lines are useful for children counting in multiples, both forwards and backwards as well as calculating single digit multiples.

When multiplying, the children start at 0 and count on to find the product of their number.

When dividing, the children place the counter on the number they are dividing and count back in jumps until they reach 0.

Labelled number lines are useful only for working with smaller numbers.

 $20 \div 4 = 5$

Number Lines (blank)

Benefits of this method:

Children can use blank number lines to represent scaling as multiplication and division.

Blank number lines can be used to help represent scaling accurately and when there are no division children can practise accurate scaling.

Base 10/Dienes (multiplication)

Benefits of this method:

Using base 10 or Dienes is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation so they can see the link.

The use of Dienes is also good for representing the area model.

Base 10/Dienes (division)

$$68 \div 2 = 34$$

Benefits of this method:

Using base 10 or Dienes is an effective way to support children's understanding of division. It is important that children write out their calculation so they can see the link.

Children should start with the left of the column for division.

Tens	Ones
	• • • •
	• • • •
	• • • •

$$72 \div 3 = 24$$

Place Value Counters (multiplication)

Benefits of this method:

Using place value counters is an effective way to support children's understanding of column multiplication.

It is important that children write out their calculation so they can see the link.

Place value counters also support the area model of multiplication well. Children can see how to multiply 2-digit numbers by 2-digit numbers.

Place Value Counters (division

Benefits of this method:

Using place value counters is an effective way to support children's understanding of division.

The children need to remember to work from the left to the right so exchange can occur if needed.

Place value counters give a better understanding of grouping rather than sharing.

Times Tables

Skill	Year	Representation	ns and models
Recall and use multiplication and division facts for the 2-times table	2	Bar model Number shapes Counters Money	Ten frames Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 5-times table	2	Bar model Number shapes Counters Money	Ten frames Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 10-times table	2	Hundred square Number shapes Counters Money	Ten frames Bead strings Number lines Base 10
Recall and use multiplication and division facts for the 3-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 4-times table	3	Hundred square Number shapes Counters	Bead strings Number lines Everyday objects
Recall and use multiplication and division facts for the 8-times table	3	Hundred square Number shapes	Bead strings Number tracks Everyday objects
Recall and use multiplication and division facts for the 6-times table	4	Hundred square Number shapes	Bead strings Number tracks Everyday objects

Recall and use multiplication and division facts for the 7-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 9-times table	4	Hundred square Number shapes	Bead strings Number lines
Recall and use multiplication and division facts for the 11-times table	4	Hundred square Base 10	Place value counters Number lines
Recall and use multiplication and division facts for the 12-times table	4	Hundred square Base 10	Place value counters Number lines

Skill: 10 times	; ta	ble									Year: 2
	10	+20	+ 30	+0 !		50 7 000			0 10 00-	•	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.
	1	2	3	4	5	6	7	8	9		Look for patterns in
	11	12	13	14	15	16	17	18	19	<u>@</u>	the ten times table,
	21	22	23	24	25	26	27	28	29	30	using concrete
	31	32	33	34	35	36	37	38	39	40	manipulatives to
	41	42	43	44	45	46	47	48	49	<u>60</u>	support. Notice the
	51	52	53	54	55	56	57	58	59	60	pattern in the digits-
	61	62	63	64	65	66	67	68	69	\bigcirc	the ones are always 0,
	71	72	73	74	75	76	77	78	79	80	and the tens increase
	81	82	83	84	85	86	87	88	89	90	by 1 ten each time.
	91	92	93	94	95	96	97	98	99	00	

	Skill: 4 time	es table		Year: 3
1 2 3 4 5 11 12 13 14 15 21 22 23 24 21 31 52 33 34 33 41 42 43 44	5 6 7 8 9 10 15 16 17 18 19 20 25 26 27 28 29 30 35 36 37 38 39 40 45 46 47 48 49 50			Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the four times table, using manipulatives to support. Make links to the 2 times table
4 8 1 24 28 3 44 48 5	121620323640525660	4 8	12 16	seeing how each multiple is double the twos. Notice the pattern in the ones
	2222 22 + + + + 12 16 20 24 2			within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

		Skill	: 8 time	s tat	ole									Year: 3
8 48 6	24 64	24 32 72 32 +0	32 40 80 40 80	1 11 21 31 41 51 61 71 81 91	2 12 22 32 42 52 62 82 92	3 13 23 33 43 53 63 73 83 93 93	4 14 34 44 54 6 94 94	5 15 25 35 45 55 65 75 85 95	6 26 36 66 76 86 96	7 17 27 37 47 57 67 77 87 97 97	 (a) 18 28 38 68 78 88 98 	9 19 29 39 69 79 89 99	10 20 30 50 60 70 80 90 100	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the eight times table, using manipulatives to support. Make links to the 4 times table, seeing how each multiple is double the fours. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

	Skill: 6 times table														Year: 4
					1 11 21 31 41 51	2 22 32 42 52	3 13 23 33 43 53	4 14 34 44	5 15 25 35 45 55	6 16 26 36 46 56	7 17 27 37 47 57	8 28 38 48 58	9 19 29 39 49 59	10 20 30 40 50 60	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table,
6 36 66	12 42 72	18 48 78	24 54 84	30 60 90	61 71 81 91	62 72 82 92	63 73 83 93	64 74 84 94	65 75 85 95	66 76 86 96	67 77 87 97	68 78 88 98	69 79 89 99	70 80 90 100	using manipulatives to support. Make links to the 3 times table, seeing how each
	>>>> ↓_+ • •		24 3	0000 		8 !	-(+ 54	×		×	× + 72) >		multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.

J.A.					1	2	3	4	5	6	7	8	9
						22	27	24	25	26	67	28	20
					31	32	33	34	35	36	37	38	39
	_	_			41	42	43	44	4 5	46	47	48	49
9	18	27	36	45	51	52	53	64	55	56	57	58	59
54	63	72	81	90	61	62	63	64	65	66	67	68	69
	00		0.		71	1	73	74	75	76	77	78	79
					81	82	83	84	85	86	87	88	89
					91	92	93	94	95	96	97	98	99
		2000	-00	0000))))	0-	-0		20	0	0	22	0

Year: 4

ncourage daily ounting in multiples oth forwards and ackwards. This can e supported using a umber line or a undred square. ook for patterns in ne nine times table, sing concrete nanipulatives to upport. Notice the attern in the tens nd ones using the undred square to upport as well as oting the odd, even attern within the nultiples.

			Skil	l: 7 time	s tab	le									Year: 4
]	1 11 20 31	2 12 22 32	3 13 23 33	4 14 24 34	5 15 25 35	6 16 26 36	7 17 27 37	8 18 28 38	9 19 29 39	10 20 30 40	Encourage daily counting in multiples both forwards and backwards, supported by a number line or a
7	1/	21	28	35	41	42	43	44 54	45	46	47	48 58	49 59	50	hundred square.
42	40	56	67	70	61	62	63	64	65	66	67	68	69	<u>70</u>	The seven times table
42	49	00	63	70	71	72	73	74	75	76	\bigcirc	78	79	80	Learn due to the lack
					81	82	83	84	85	86	87	88	89	90	of obvious pattern in
					91	92	93	94	95	96	97	99	99	100	the numbers, howeve
?? - 0	→ → 7 1	₩ 		1 ; 42 4))) 	○ - 5 6	+) -+ 70		×	8r -+	•	\rightarrow)—	they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support.

				Skil	ll: 11 t	imes	tab	le									Year: 4
11	22	33	44	55	66]	1	2	3	4	5	6	7	8	9	10	Encourage daily
77	88	99	110	121	132		1	12	13	14	15	16	17	18	19	20	both forwards and
	00			121	IOL]	21 31	2 32	23	24 34	25 35	26 36	27 37	28 38	29 39	30 40	backwards. This can
10	1	10		(•		41	42	43	44	45	46	47	48	49	50	be supported using a
\smile				G		5	51	52	53	54	65	56	57	58	59	60	hundred square.
		\smile			\leq		61	62 72	63	64 74	65 75	66	67	68 79	69 70	70	
					$\mathbf{\tilde{\mathbf{v}}}$		81	82	83	84	85	86	87	89	89	90	Look for patterns in
							91	92	93	94	95	96	97	98	99	100	table, using concrete
	• o 1	1 22	33	44	55 6	 56 77	7 8	8	+ 99	, 11	+	+		52			manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support. Also consider the pattern after crossing 100

_																	_
					Skil	l: 12 times	tal	ble									Year: 4
10	12 72 132	24 84 144	36 96	48 108 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60 120		1 11 21 31 41 51 61 71	2 22 32 42 52 62 (2)	3 13 23 33 43 53 63 73	4 14 34 44 54 64 74	5 15 25 35 45 55 65 75	6 16 26 36 46 56 66 76	7 17 27 37 47 57 67 77	8 18 28 38 43 58 68 78	9 19 29 39 49 59 69 79	10 20 30 40 50 60 70 80	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the 12 times table, using manipulatives to support. Make links
		↓ 0 1	2 24	+ 36	48		81 91	82 92	83 93	94	95 92		87 97	88 98	89	90	to the 6 times table, seeing how each multiple is double the sixes. Notice the pattern in the ones within each group of five multiples. The hundred square can support in highlighting this

.

Multiplication

Skill	Year	Representati	ons and models
Solve one-step problems with multiplication	1/2	Bar model Number shapes Counters	Ten frames Bead strings Number lines
Multiply 2-digit by 1- digit numbers	3/4	Place value counters Base 10	Short written method Expanded written method
Multiply 3-digit by 1- digit numbers	4	Place value counters Base 10	Short written method
Multiply 4-digit by 1- digit numbers	5	Place value counters	Short written method
Multiply 2-digit by 2- digit numbers	5	Place value counters Base 10	Short written method Grid method
Multiply 2-digit by 3- digit numbers	5	Place value counters	Short written method Grid method
Multiply 2-digit by 4- digit numbers	5/6	Formal written method	

Skill: Multiply 4-0	digit	nur	nbe	rs by	y 1-c	digit numbers	Year: 5
Thousands 100 100 100 100 100 100 100 10	Hundreds 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100	80 100 100 100 100 100 100 100 100 100 1	о () () () () () () () () () () () () ()	Tens	,47 0 6 3	7 8	When multiplying 4- digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so
		5	4	7	8		the use of the written
		2		1			method.

Skill: Multij	Year: 5							
				Th	H 2	T 3 3	0 4 2	Children can continue to use the area model when multiplying 3- digits by 2-digits. Place value counters become more efficient to use but
				1 ⁷ 7	4 1 ⁰ 4	6 2 8	8 0 8	Base 10 can be used to highlight the size of numbers. Encourage children to
234 × 32 =	7,488	× 30 2	200 6,000 400	9	30 00 60		4 120 8	formal written method, seeing the links with the grid method.

Skill: Multiply	Year: 5/6									
٢	TTh	Th	Н	Т	0		When multiplying 4- digits by 2-digits, children should be			
		2	7	3	9		written method.			
	×			2	8		If they are still struggling with times tables, provide multiplication grids to support when they are focusing on the use of the method.			
2	2	1 5	9 3	1 7	2					
1	5	4	7 1	8	0					
	7	6	6	9	2		Consider where			
2,739 × 28 = 7	2,739 × 28 = 76,692									

Division

Skill	Year	Representations and models		
Solve one-step problems with division (sharing)	1/2	Bar model Real life objects	Arrays Counters	
Solve one-step problems with division (grouping)	1/2	Real life objects Number shapes Bead strings Ten frames	Number lines Arrays Counters	
Divide 2-digits by 1- digit (no exchange sharing)	3	Straws Base 10 Bar model	Place value counters Part-whole model	
Divide 2-digits by 1- digit (sharing with exchange)	3	Straws Base 10 Bar model	Place value counters Part-whole model	

Divide 2-digits by 1- digit (sharing with remainders)	3/4	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1- digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division
Divide 3-digits by 1- digit (sharing with exchange)	4	Base 10 Bar model	Place value counters Part-whole model
Divide 3-digits by 1- digit (grouping)	4/5	Place value counters Counters	Place value grid Written short division

Skill	Year	Representations and models			
Divide 4-digits by 1- digit (grouping)	5	Place value counters Counters	Place value grid Written short division		
Divide multi-digits by 2-digits (short division)	6	Written short division	List of multiples		
Divide multi-digits by 2-digits (long division)	6	Written long division	List of multiples		

Skill: Divide 2-digits by 1-d	Year: 3/4	
$\frac{\text{Tens}}{1}$ $\frac{1}{12}$ $\frac{40}{12}$ $\frac{52}{12}$ $\frac{40}{12}$ $\frac{52}{12}$ $\frac{52}{12}$ $\frac{52}{10}$ $\frac{52}{10}$ $\frac{52}{10}$ $\frac{52}{10}$ $\frac{52}{10}$	52 $7 ? ? ? ?$ $4 = 13$ 52 $7 ? ? ? ?$	When dividing numbers involving an exchange, children can use Base 10 and place value counters to exchange one ten for ten ones. Children should start with the equipment outside the place value grid before sharing the tens and ones equally between the rows. Flexible partitioning in a part-whole model supports this method.

Skill: Divide	Year: 3/4		
Skill: Divide	2-digits by 1-di	igit (sharing with remainders) 53 13 13 13 13 1 13 13 13 13 1 4 = 13 r1 33 33 33 33 33 33 33 33	Year: 3/4 When dividing numbers with remainders, children can use Base 10 and place value counters to exchange one ten for ten ones. Starting with the equipment outside the place value grid will highlight remainders, as they will be left outside the grid once the equal groups have been
$\begin{array}{c} \div 4 \\ 12 \\ 10 \\ 3 \end{array}$	1	0 000 0 000 0 000	made. Flexible partitioning in a part-whole model supports this method.

Skill: Divide 4-digits by 1-digit (grouping)											
Th											

~

\

Skill: Divide multi digits b	Skill: Divide multi digits by 2-digits (short division)											
0 3 6 12 4 ⁴ 3 ⁷ 2		432	÷ 12	2 = 3	6	When children begin to divide up to 4- digits by 2-digits, written methods become the most accurate as concrete and pictorial representations become less effective. Children can write out multiples to support						
		0	4	8	9	larger remainders.						
7,335 ÷ 15 = 489	15	7	73	¹³ 3	¹³ 5	solve problems with remainders where the						
15 30 45 60 75	90	105	120	135	150	quotient can be rounded as appropriate.						

	Skill: Divide multi-digits by 2-digits (long division)												Year: 6	
1	2 -	0 4 3	3 6 7 7	6 2 2 2 0	(×30) (×30) (×6) (×6) 1 1 1 1	$2 \times 1 = 12$ $2 \times 2 = 24$ $2 \times 3 = 36$ $2 \times 4 = 48$ $2 \times 5 = 60$ $2 \times 6 = 72$ $2 \times 7 = 84$ $2 \times 8 = 96$ $2 \times 7 = 108$ $2 \times 10 = 120$			43	2	÷	12 =	= 36	Children can also divide by 2-digit numbers using long division. Children can write out multiples to support their calculations with larger remainders.
								0	4	8	9		1 × 15 - 15	
							15	7	3	3	5		$1 \times 15 = 15$	Children will also
							-	6	0	0	0	(×40C	$2 \times 15 = 30$	solve problems with
	7.335 ÷ 15 = 489						1	3	3	5		5 × 15 = 45	remainders where the	
Ċ	,-		-	-			-	1	2	0	0	(×80)	$4 \times 15 = 60$	quotient can be
									1	3	5		$5 \times 15 = 75$	rounded as
							-		1	3	5	(×9)	$10 \times 15 = 150$	appropriate.
											0			

1

_

Skill: Divide multi digits by 2-digits (long division)												Year: 6		
372 ÷ 1	5 3 - 3	= 2 7 0 7 6 1	4 2 0 2 0	r12	1	5 - 3	3 3 72	2 7 6 1	4 2 0 2	r 5	1	2	$1 \times 15 = 15$ $2 \times 15 = 30$ $3 \times 15 = 45$ $4 \times 15 = 60$ $5 \times 15 = 75$ $10 \times 15 = 150$	When a remainder is left at the end of a calculation, children can either leave it as a remainder or convert it to a fraction. This will depend on the context of the question. Children can also answer questions where the quotient needs to be rounded according to the context.

Glossary

Array – An ordered collection of counters, cubes or other item in rows and columns.

Commutative – Numbers can be multiplied in any order.

Dividend – In division, the number that is divided.

Divisor – In division, the number by which another is divided.

Exchange – Change a number or expression for another of an equal value.

Factor – A number that multiplies with another to make a product.

Multiplicand – In multiplication, a number to be multiplied by another.

Partitioning – Splitting a number into its component parts.

Product – The result of multiplying one number by another.

Quotient - The result of a division

Remainder – The amount left over after a division when the divisor is not a factor of the dividend.

Scaling – Enlarging or reducing a number by a given amount, called the scale factor